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N u m e r i c a l  Analys is  o f  a Shock-Wave  Solution of  the 
Enskog  Equation Obtained via a M o n t e  Carlo Method  
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In this paper a planar stationary shock-wave-like solution of the Enskog 
equation obtained via a Monte Carlo technique is studied; both the algorithm 
used to obtain the solution and the qualitative behavior of the macroscopic 
quantities are discussed in comparison with the corresponding solution of the 
Boltzmann equation. 
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1. I N T R O D U C T I O N  

In rarefied gas dynamics  the Bo l t zmann  equa t ion  seems to be a quite 
sa t is factory  tool  to descr ibe  a wide class of phenomena .  In  1921 Enskog  ~) 
p r o p o s e d  to modify  the Bo l t zmann  equa t ion  in such a way as to descr ibe 
the behav ior  off mode ra t e ly  dense gases. The  equa t ion  p r o p o s e d  by Enskog  

is the fol lowing:  
OF 
~t k ~ ~  F) (1) 

where 

JE(F, F) = a 2 f f  (~r o ~) H(~,o ~) 

[((a)) x Y n x +-~ ~ F(~*, x, t) F({?,  x + a L  t) 

• F({, x, t) f({,, x - aL t)] d{~ dE (2) 
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In Eq. (2), a is the diameter of the molecules (assumed to behave like hard 
spheres), {r is the relative speed of the centers, 1~ is the unit vector of the 
line joining the centers of the molecules, H is the Heaviside step function, 
and the Y factor is a function of the space and time variables through the 
density n(x, t) evaluated where the molecules come into contact. As clearly 
appears from Eq. (t), the Enskog equation attempts a description of the 
behavior of dense gases by retaining the binary structure of the Boltzmann 
collision integral. However, the molecules are no longer considered dimen- 
sionless points and the collision partners occupy different positions. 
Moreover, the factor Y brings into the collision rate the effects of mutual 
shielding and of the reduction of volume available for molecular motion. In 
the present work, the Y factor originally proposed by Enskog has been 
adopted.(2, 3) 

Although the Boltzmann equation has received much more attention, 
in recent years interest in the Enskog equation has grown and interesting 
results are available for the problems of existence, uniqueness, and 
asymptotic behavior of the solutions. (4' 5~ However, to our knowledge, no 
explicit solution is known, either analytical or numerical. Therefore, dense 
gases have been studied by other theoretical tools, such as Navier Stokes 
equations or computer experiments on molecular dynamics. (6) 

In this paper the classical problem of the propagation of a shock wave 
is studied numerically within the framework of the Enskog equation. The 
adopted numerical method is an extension of a Monte Carlo technique 
already used to obtain solutions of the Boltzmann equation. In the next 
section the problem of conservation equations and the role of the Rankine- 
Hugoniot conditions are briefly discussed; in Section 3 the numerical 
technique is described, while the numerical results are described and 
discussed in Section 4. 

2. BASIC  E Q U A T I O N S  A N D  T H E  R A N K I N E - H U G O N I O T  
R E L A T I O N S  

As anticipated in the previous section, in the present paper the 
propagation of a plane shock wave in a dense gas is studied. Attention is 
focused on the calculation of the fully formed shock profile, which appears 
stationary to an observer moving with the shock front. Accordingly, 
numerical solutions of the following one-dimensional steady equation are 
sought: 

~F 
~.x ~x = JE(F, F) (3) 
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The boundary conditions for Eq. (3) are 

lira F(x, ~) - (2~rRT1)3/2 exp 2-R-~1 J (4a) 

.2 [ u2)2l 
lim F(x, ~) - (2toRT2)3~ 2 exp ~-~2 J (4b) 

X =:~ + of) 

since it is assumed that far from the shock, equilibrium conditions exist. 
In Eqs. (4) nl, U1, T1 and n2, U2, 7"2 are the density, bulk velocity, and 
temperature, respectively, of the upstream and downstream equilibrium 
distribution, and R is the gas constant. The parameters of the downstream 
and upstream equilibrium states are connected by the following modified 
Rankine-Hugoniot relationships: 

nl U1 = n2 U2 (5a) 

n ~ [ U 2 + R T I ( 1  + b Y n l ) ]  = n 2 [ U ~ + R T 2 ( 1  + b Y n 2 ) ]  (5b) 

[ U ~ + R r l ( 5 + 2 b r n ~ ) ]  = [ U Z 2 + R T 2 ( 5 + 2 b Y n z ) ]  (5c) 

since the upstream and downstream fluxes of mass momentum and energy 
must be equal. The quantities Y and b appearing in Eqs. (5) are defined as 

1 + (11/8) bn 
Y(n) - 1 - 2bn (6) 

where b=(2 /3 ) rca  3. In complete analogy with the classical case, the 
problem of solving Eqs. (5) can be reduced to determining the intersection 
of a straight line (the Raleigh straight line) with a more complex curve (the 
Hugoniot hyperbola in the classical case). The abscissa of the intersection 
point is determined numerically and gives the ratio n~/n2. 

In investigating the planar shock-wave behavior of a dense gas it is 
tempting to use the Mort-Smith ansatz (7) in a fashion analogous to the 
Boltzmann case. The success of the Mort-Smith approach is crucially 
related to the linearity of the ansatz, which allows the automatic conserva- 
tion of mass, momentum, and energy everywhere in the flow field once the 
Rankine-Hugoniot relationships hold. The unknown amplitude function 
may be therefore determined by writing a balance equation for a non- 
conserved quantity. In a recent paper, Orlov (8) presented an application 
of the Mott-Smith method to a kinetic equation derived from the Enskog 
equation assuming that the parameter na 3 (the product of a character- 
istic number density times the cube of the molecular diameter) is small. 
Unfortunately, in this case the Mott-Smith distribution function can no 
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longer ensure the conservation of momentum and energy fluxes throughout 
the whole flow field. In fact, the nonlocal collision integral brings into the 
fluxes a term of the order of na 3 which is quadratic in the amplitude 
appearing in the ansatz. The coefficient of the quadratic term does not 
vanish when Eqs. (5) hold, and the fluxes cannot be constant. 

3. DESCRIPT ION OF THE N U M E R I C A L  M E T H O D  

The numerical method used to calculate approximate solutions of 
Eq. (1) is the natural extension of the so-called "direct method" proposed 
in 1959 by Nordsieck (9) to solve the Boltzmann equation. The method is 
based on a finite difference scheme combined with Monte Carlo techniques 
to evaluate the collision integral. Over the years, the original Nordsieck 
algorithm has been modified and improved by several authors who applied 
it to calculate one-, two-, and three-dimensional solutions of the 
Boltzmann equation for a monatomic gas ('~ 1~) and one-dimensional flows 
of mixtures and polyatomic gases. (17) As far as the Boltzmann equation is 
concerned, the direct method is not as popular as Bird's direct simulatioia 
Monte Carlo method (DSMC) and its various "dialects." The former 
method was less succesfull because of its greater demand of computer 
memory, which makes it impractical in multidimensional problems, i.e., in 
most of the practical applications of rarefied gas dynamics. The situation is 
more favorable in one-dimensional problems, where the memory demand is 
smaller. Furthermore, the algorithm is ideally suited for vector and/or 
parallel processing. ('7) Since no analog DSMC or particle scheme has yet 
been proposed for the Enskog equation, the direct method suggests itself as 
a consistent numerical scheme that can be used as a starting point. 

The numerical algorithm adopted in the present work is based on the 
normalized form of the Enskog equation: 

OF OF 
- ~  + ix  ~x  = JE(F, F) = GE(X, ~1 t) -- VE(X, ~l t) F(x, ~l t) (7) 

where 

G~(x, ~1 t) = - -  

v~(x, ~1 t ) -  - -  

1 E 

• 1 6 2  (8a) 

• F(x  -- Ekx,  ~1 )(~r o ~) y(~rO ~) (85) 



Shock-Wave Solution of Enskog Equation 197 

In the above equations F is the distribution function normalized to 
nl/(RT1) 3/z, where nl and T1 are reference values of the number density 
and temperature, respectively. The molecular velocity { is normalized to 
(RT~) l/z, the spatial coordinate x is normalized to the upstream mean 
free path 21=l /[x~zra2nlY(n l ) ] ,  while the time is normalized to 
v=21/(RT~) 1/2. The dimensionless parameter E is defined as the ratio of 
the molecular diameter to the reference mean free path 21 and is related to 
the parameter NI = (4ga3/3)nl by the simple relationship 

E =  Y1 ~ 3N1 (9) 

where 
1 - 11/16NI 

Y~ - (10) 
1 - N 1 

The first step toward the construction of the algorithm is the choice of a 
proper discretization of the distribution function in the physical and 
velocity spaces. In this work the region occupied by the standing shock 
wave (an interval on the x axis centered about the origin) has been divided 
into a number of cells of the same size, and the distribution function 
assumed to be spatially homogeneous within each cell. A similar procedure 
has been adopted to represent the distribution function in the velocity 
domain consisting of a finite cylinder. The domain has to be chosen wide 
enough to contain the significant part of the distribution function at any 
stage of the calculations. In the problem considered here computer storage 
is saved by taking advantage of the symmetry of F, which depends on the 
velocity through the arguments 4x and 4• = (g2_]_ ~:2)1/2 

Accordingly, a regular net of nodes (4x, 4.)  is arranged into the rec- 
tangular region whose rotation about the x axis generates the cylindrical 
velocity domain. It is assumed that the distribution function is constant 
within each ringlike cell of center 4x and mean radius 4. .  The discretized 
solution of the finite difference analog of Eq. (7) is advanced from one time 
level to the next by time-splitting the evolution operator. First molecules 
move freely trough the spatial grid according to the equation 

8F(~, x, t) + 4x 8F(r x, t) _ 0 (11) 
8t 3x 

Then the collisional process takes place in each cell of the spatial grid 
according to the equation 

0r(~, x, t) 
at = JE(~, x, t) (12) 
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The time-splitting method described above closely patterns the procedure 
first proposed by Bird (12) and used in particle schemes, in which the free 
molecular motion and the intermolecular collisions are two independent 
stages of the algorithm that update the particle position and velocity. 
It is worth noticing that Eq. (12) does not describe a homogeneous 
relaxation, since the evaluation of the collision integral JE({, X, t) involves 
the distribution function in nearby cells. 

Within the framework of the present finite difference method the first 
step is performed by a simple first-order explicit upwind conservative 
scheme. 

As far as the collisional step is concerned, at each spatial location x~, 
Eq. (12) is integrated over the cell O(l, m) of the velocity space: 

where 

dN( l ,  rn, ilt)=~o d~JE(~,xi, t)=-JE(l,m, ilt) (13) 
dt (t,m) 

N(l ,m,i[ t )=fo F(~,x~,t) d{=Av(1, m)F(l,m,i[t) 
(l,m) 

(14) 

In Eqs. (13) and (14), N(l, m, i[ t) represents the expected number of par- 
ticles in the cell centered around the velocity node {(l, m), while Av(l, m) 
and F(l, m, iL t) are the cell volume and the mean value of F({, xi, t) in the 
cell, respectively. 

The integral appearing in Eq. (13) can be transformed into an integral 
extended to the whole velocity domain ~U by introducing )~t.m({), the 
characteristic function of the cell 8(l, m): 

d ( .  

2_ N(l, m, i] t) = | Zt, m({) JE({, Xi, t) d{ (15) 
dt o r  

Now, taking into account the expression of JE({, X, t) and making use of 
some fundamental properties of the collision integral, Eq. (15) can be 
written in the following form: 

dN(l ,m,  i l t )=5 [Zt.,,,({)-)&m({*)]JE({,xi, t) d{ (16) 
dt 

The eightfold integral at the right-hand side of the above equation is 
evaluated by a Monte Carlo quadrature method, (16) since a regular method 
would be computationally too expensive. The procedure that carries out 
the evaluation of the collision integral in the ith spatial cell can be roughly 
described as follows: 
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(a) A sequence of NTe~t "collision partners" ~, {~ and collision 
parameters k is generated, the velocity { and {1 being uniformly distributed 
in ~ and the vectors k uniformly distributed on the unit sphere. 

(b) The postcollision velocity vectors are calculated from 

~*=~+(~'~)~r 
~1 ~ =~1- -  (~'~r)~r 

(c) As indicated in Eq. (16), each collision is used to update the value 
of the collision integral in the cells of the velocity space containing 
and ~*. The same collision also contributes to the calculation in the cells 
containing ~1 and ~ when the roles of ~ and ~1 are exchanged. 

The three steps sketched above are repeated at each spatial location 
keeping the same sample of NTest collision. The sample is renewed at the 
beginning of each time step. 

Once the collision integral has been evaluated, the solution is advanced 
from the qth time level to the next according to the explicit scheme 

F(q + 1) = F(q) -b J (E q) A t (17) 

As is well known, the application of the technique described above to 
the numerical solution of the Boltzmann equation leads to a scheme in 
which mass, momentum, and energy are not exactly conserved. The 
numerical errors are usually small, but have the unpleasant feature of 
accumulating during the time evolution of the distribution function. There 
are several error sources, but the most fundamental one is the use of a 
discretized velocity space. Although the procedure described above does 
practically eliminate the mass error, it is only able to reduce the error 
associated with momentum and energy. In the case of the Boltzmann 
equation, Aristov and Tcheremissine (15) proposed a correction method to 
overcome the difficulty. At each time step the distribution function is 
corrected in the following way: 

F(q+ ~)(~) = F (q + 1)(r + A + B o r + C~ 2) (18) 

In Eq. (18) F(q+l)(~) is the distribution function computed from Eq. (17). 
A corrected distribution function p(q+l)({) is computed multiplying 
F(q+ 1)({) by the polynomial P({) = 1 + A + B o { + C{ 2. The constants A, 
B, and C are determined from the conditions: 

O({)= 1 ' ~,, ~2 (19) 
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It is worth mentioning that the correction method outlined above, 
although consistent (15) (it does not destroy the consistency of the finite 
difference scheme), has no clear theoretical ground. Its validity should be 
checked in any situation and the grid in the velocity space should be 
refined until no changes in the final results is observed. 

A similar correction step has been added to the algorithm that com- 
putes the numerical solution of the Enskog equation. Since momentum and 
energy are not locally conserved by the Enskog collision term, the coef- 
ficients of the correction polynomial cannot be obtained on the ground of 
Eqs. (19). Two of them have to be replaced by the momentum and energy 
collisional balance: 

f ~x~(q+ 1)(~) d~-= f ~xF(q)(~) d~ q- ~ At (20) 

f ~2p(q+ 1)(~) d~ = f ~2F(q~(~) d~ + g At (21) 

where 

Before describing and discussing the numerical results a few comments are 
in order. It should be noticed that the choice of a time explicit scheme to 
update F could be dangerous because it might lead to negative values of 
the distribution function. The negative values which are sometime observed 
are limited to the regions where the absolute value of F is extremely small. 
Accordingly, negative value are simply set equal to zero. 

The effects of the truncation are easily monitored because cutting an 
excessively large part of F would be manifest through a large mass error. 
Although the procedure might look less reassuring than the use of a "safe" 
implicit scheme, some numerical tests show that an implicit scheme needs 
larger correction coefficients and finally leads to slightly larger shocks. 

4. D E S C R I P T I O N  OF THE N U M E R I C A L  RESULTS 

The numerical procedure described above was used to study the 
propagation of shock waves in a dense gas at relatively low Mach number. 
Each computation started with the gas filling the half-space x < 0 in the 
upstream equilibrium condition and the half-space x > 0 in the downstream 
equilibrium condition as given by the Rankine-Hugoniot relationships. 
Computational parameters such as grid size, time step, and collision n u m -  
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Fig. 1. 

U I -U 2 

T - T  1 

T2-T I 

r l - n  1 

n 2 - n 1 

0 

Comparison of DSMC results (circles) and direct method calculations (solid lines). 
Mach number = 2, E= 0 (Boltzmann gas). 

ber were varied until no appreciable changes in the solution were observed. 
The first series of calculations was aimed at checking the ability of the com- 
puter program to reproduce DSMC shock results in the limit case E =  0. 
In Fig. 1 the shock profiles in a hard-sphere gas obtained by the authors 
using Koura's null-collision DSMC (I4) are compared with the correspond- 
ing results obtained from the direct method. The agreement between the 
two methods is rather good, although a closer examination indicates that 
DSMC produced slightly steeper shock profiles. Shock profiles in a dense 

3 ........ i ............ i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . .  

i l .... i 
8 B 4 2 o 

x/at 

Fig. 2. Normalized density profiles. M B = 4. 
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gas were then calculated for values of the parameter E in the range 
[0, 0.4]. For each value of E different solutions were obtained by varying 
the parameter MB = U~/(TRT1) 1/z (7=5/3)  in the range (2, 4). It should 
be noticed that MB is not the effective upstream Mach number, because 
the adiabatic speed of sound depends on E, too. Examples of density and 
temperature profiles are displayed in Figs. 2 and 3. The calculations were 
performed setting MB = 4 and changing E. As clearly appears from Fig. 2, 
the density jump across the shock is reduced when E increases. This effect 

(a) 

U - U  2 

U 1 - U2 

T ~ T  1 

T 2 - T  1 

r l - n  l 

112 -i"11 

(b) 

U - I j  2 

i U1-Ua  

-8 - 6  -~  -2 0 

x/h8 

Fig. 3. (a) Effects of the parameter E on normalized shock profiles. M B = 4 .  Solid lines, 
E =  0. Dashed lines, E =  0,2. Dashed-dotted lines, E =  0.4. (b) As in (a), but with the spatial 
coordinate x normalized to 2 B. 
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is due to the additional terms in the Rankine-Hugoniot  relationships. To 
help comparing shock profiles in different conditions, normalized density, 
temperature, and velocity profiles are shown in Fig. 3a, each quantity being 
normalized to its own variation across the shock region. The normalized 
density profiles show little variations and the parameter E seems to affect 
mainly the lag between the temperature and density rise. This effect is more 
evident in Fig. 3b, where the same normalized quantities are plotted 
against the spatial coordinate normalized to 2B = 1 / ( , ~  ~a2nl), which does 
not depend on E. The distinctive features of the Enskog collision term are 
more readily appreciated from the curves displayed in Fig. 4a, where the 
functions J~(x) and ~(x)  are plotted. These two functions give the 

(a) 

-0. 

I 

_2 i 

25 

-3 

5 

(b) 
4 5  

-s -5 -~ -~ o 2 4 s e io 

x / X t  

4 

3 5  

3 

x / X 1  

Fig. 4. (a) Profiles of the collisional rate of change of momentum (,/~) and energy (~). 
MB=3.5, E=0.4. Dotted lines: instantaneous profiles. Solid lines: time-averaged curves. 
(b) Mass flux profiles. M B = 3.5, E= 0.4. 
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normalized rate of change of momentum and energy due to the nonlocal 
character of the collision process. Each of the two groups of curves dis- 
played in Fig. 4a was obtained by superposing data collected at relatively 
long time intervals after the onset of a steady shock profile. Owing to the 
statistical nature of the computational method, the data exhibit variations 
in time. However, the time-averaged curves (represented by the solid line 
in Fig. 4a satisfy the following relationships: 

I; ({) ~x ~2 F(~,x) d~ ~= ~ \ g(x) ] 

to less than 1% of the exact value. Examples of computed mass flux profiles 
are shown in Fig. 4b. Again, the graph was obtained by superposing 
samples of the mass flux profiles collected for a long time period after the 
onset of the steady state. It can be noticed that very small differences exist 
among the individual samples, each of them being fairly constant. 

The results of the computations are summarized in Fig. 5, where the 
reciprocal shock thickness 6 ' is plotted as a function of the Mach number 
for various values of the parameter E. The reciprocal shock thickness is 
defined as the maximum value of the normalized density gradient: 

6 '  1 (dn)  (24) 
/72--/'/1 ~X Max 

The data displayed in Fig. 5a have been obtained by a time average of the 
maximum density gradient, which decreases very rapidly toward its final 
value as the initial discontinuity dies out. The time averaging is necessary 
to suppress the unavoidable oscillations due to the Monte Carlo procedure. 
It is worth mentioning that the amplitude of such oscillations was about 
3 % of the mean value in the worst case. 

At lower Mach numbers the curves are very close and differ very little 
from the Mott-Smith curve. As the Mach number grows, the curve corre- 
sponding to E=0.4 goes above the Boltzmann curve (E=0),  while the 
curve corresponding to E = 0.2, although very close to the Boltzmann case, 
remains slightly below it. The nonmonotonic behavior of the reciprocal 
shock thickness is even more evident upon plotting 6-1 against MB, as in 
Fig. 5b, where the crossing of the curves is evident. 

A qualitative explanation of this behavior can be attempted assuming 
that the shock thickness is of the order of )-,2, the mean free path of the 
molecules entering the high-density, low-speed region from the low-density, 
high-speed region. Neglecting the details of the distribution function, an 
approximate value for 2,2 can be given by the following expression(IS): 

U~ 1 
"]412 ~ U1 -- U~2 ~ ~a2n2 Y(n2) (25) 
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Therefore, an approximate value of the normalized shock thickness is given 
by 

,~12 U~ nl g(nl )  
6 ~ - (26) 

;L E f l - U2 n2 Y(n2) 

Now it can be easily checked that if M B is fixed and E is varied, the factor 
n 1 Y(n ~ )In 2 Y(n2), the high-Mach-number limit of expression (26), exhibits 
a maximum around E = 0.2 if MB is greater than 2.5. If the additional term 
U 1 / ( U ~ -  U2) is taken into account, maxima are also found, but for MB 
greater than 4. The assumptions used to obtain Eq. (25) are certainly more 
justified at high Mach number; nevertheless it is reassuring to see that the 
expression (26) qualitatively reproduces the behavior of the data shown in 
Fig. 5a. 
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Fig. 5. (a) Reciprocal shock thickness as a function of the Mach number and E. Circles, 
E = 0 ;  crosses, E=0.2; asterisks, E=0.4. Solid line, Mott-Smith {2 curve for hard-sphere 
potential. (b) Reciprocal shock thickness as a function of the M B and E. Circles, E=0;  
crosses, E =  0.2; asterisks, E =  0.4. 
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5. C O N C L U D I N G  R E M A R K S  

In this paper the behavior of a stationary shock wave in a dense gas 
has been investigated in a narrow region of the plane (M, E). Further 
progress in establishing the validity of the Enskog equation is essentially 
related to the enhancement of the efficiency of the numerical method. 
At present a particle scheme for the Enskog equation is being developed 
following the lines of Nambu's (13) scheme modified by a majorant collision 
frequency method. ~ The development of an alternative method will also 
provide an independent check of the solutions presented here. 

It is worth mentioning that the Y factor appearing in the Enskog 
equation, for which an approximate expression has been assumed accord- 
ing to the classical treatments, can be evaluated in a more refined way as 
a pair correlation function by a suitable cluster expansion. The resulting 
equation is called the revised Enskog equation and the transport coef- 
ficients given by this modified version of the Enskog equation have been 
proved to satisfy the reciprocity relations provided by the irreversible ther- 
modynamics (19) and an H-theorem has been proved for its solutions. (2~ 
This could be another research line along which an improvement of the 
present results could be made. 

An approach to the dynamics of dense gases based on the Enskog 
equation is intermediate between the "exact" molecular dynamics method 
(MD) and the hydrodynamic approach based on the Navier-Stokes equa- 
tions (NSE). Hence, a comparison of the present results with those 
obtained by MD and NSE would be very interesting. The comparison with 
the hydrodynamic approach seems particularly promising in the light of the 
ideal gas results by Fiscko and Chapman (21) on the Burnett and super- 
Burnett equations on one hand and by Holian e t  al. (=~ on the other. In 
particular the latter have shown that Navier-Stokes equations can compete 
with MD in describing dense fluids (6) and, more recently, that the dis- 
crepancies between the NSE and the microscopic approach can be further 
reduced by a suitable modification of NSE/23) In the case of a dense gas, 
to our knowledge, only a linearized version of the Burnett equations has 
been produced. (24~ 
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